Declaration of Cynthia J. Moss

I, Cynthia J. Moss, declare as follows:

Introduction and Qualifications

- 1. My name is Cynthia J. Moss.
- 2. I am over the age of 18 and understand the obligations of an oath.
- 3. I graduated with a Bachelor of Arts in Philosophy from Smith College in 1962, and received an honorary Doctorate of Science from Smith College in 2002 and an honorary Doctorate of Social Science from Yale University in 2019. I reside and work in Amboseli National Park, Kenya.
- 4. I submit this Declaration in support of the Nonhuman Rights Project, Inc.'s petition for a writ of habeas corpus regarding the captive elephants at the Pittsburgh Zoo & Aquarium. I am a nonparty to this proceeding.
- 5. I have studied and worked with elephants in Africa for the past 52 years. I am currently the Director of the Amboseli Elephant Research Project and have been since 1972, and I am currently the Director of the Amboseli Trust for Elephants and have been since 2001. Prior to founding the Amboseli Elephant Research Project, I worked: (1) as the editor for the African Wildlife Foundation's Wildlife News from 1971 to 1985; (2) part-time as a freelance journalist, mainly for Time and Life magazines, from 1970 to 1971; (3) as a research assistant on various projects with Drs. A.M. and S. Harthoorn, Dr. V. Finch, and Dr. J.B. Sale, consecutively from 1969-1970; (4) a research assistant to Dr. I. Douglas-Hamilton full time in 1968 and part-time in 1969, 1970, and 1971; (5) a reporter/researcher for Newsweek Magazine in New York from 1964 to 1968.
- 6. As Director of the Amboseli Elephant Research Project, and also as the director of the Amboseli Trust for Elephants, I have set up the world's longest-running research project on wild elephants in the Amboseli National Park, Kenya. My research focus incorporates the distribution, demography, population dynamics, social organization and behavior of the Amboseli elephants. My current work includes directing and supervising research and monitoring in the Amboseli National Park; training elephant researchers from African elephant

range states; outreach to the local Maasai community; carrying out surveys and training courses at other elephant study sites in Africa; disseminating scientific results; advocating for elephant welfare; promoting public awareness by writing popular articles and books and by making films about elephants; and fund raising for and administering the Amboseli Elephant Research Project.

- 7. Over the course of my career, I have received awards from international nongovernmental, media, academic, research, zoological, and professional organizations, including: (1) the Outstanding Achievement Award from the Jackson Hole Wildlife Film Festival in 2015; (2) the John D. & Catherine T. MacArthur Foundation Fellowship (2002-2007); (3) the Conservation Award from the Cincinnati Zoo in 2005; (4) the Guardian Award from In Defense of Animals in 2004; (5) the Distinguished Conservation Fellow Award from the Los Angeles Zoo in 2002; (6) my Honorary Doctorate Degree from Smith College in 2002; (7) an Award from Performing Animal Welfare Society in 2002; (8) elected Fellow of the Society of Women Geographers in 2001; (9) Advisor to the International Fund for Animal Welfare, ongoing since 2001; (10) sabbatical Fellowships at the National Center for Ecological Analysis & Synthesis, University of California, Santa Barbara (1999, 2000, 2001); (11) the Centennial Conservation Award from the Woodland Park Zoo in 1999; (12) the Conservation Excellence Award from the Oakland Zoo in 1999; (13) my book Little Big Ears received an award from the John Burroughs Foundation and the American Museum of Natural History in 1998; (14) elected Fellow of the Royal Geographical Society in 1997; (15) my film "Echo of the Elephants" received awards at Jackson Hole Wildlife Film Festival and the Italian Film Festival in 1993; (16) the Smith College Medal for alumnae achievement in 1985; (and 17) nomination of my book "Portraits in the Wild: Behavior Studies of East African Mammals" (1975, Houghton Mifflin, Boston) for the American Book Award for best science paperback of the year in 1982.
- 8. I am affiliated with a number of professional organizations, including: (1) the Author's Guild; (2) the Royal Geographic Society (elected Fellow); (3) the Society of Women Geographers (elected Fellow); (4); (5) the East African Natural History Society; (6) the East African Wild Life Society; (7) the Kenya Society for the Protection & Care of Animals; and

- (8) PEN America. I was a member of the IUCN/SSC African Specialist Group from 1988-1996. Throughout my career, I have continued to lecture on elephant social organization and behavior to university students, wildlife club members, and specialist groups in Kenya, India, the US, and the United Kingdom. I have also served as a Consultant to conservation groups, animal welfare organizations, zoos, and others on elephant-related issues throughout my career.
- 9. During the course of my research career, I have been awarded extramural research grants from a number of institutions and groups including: (1) the African Wildlife Foundation in 1975; (2) the Midgard Foundation from 1978-1979; (3) the New York Zoological Society as a Research Fellow from 1979-1984; (4) the Disney Conservation Foundation from 1996-2006; (5) the Delano Foundation from 1996-1999; (6) the International Fund for Animal Welfare (IFAW); (7) Born Free Foundation, ongoing; (8) Detroit Zoological Society, ongoing; (9) East Bay Zoological Society, ongoing; (10) Rettet die Elefanen, ongoing; (12) Fairplay Foundation, ongoing; (13) Rogers Family Foundation, ongoing; (14) Charles Engelhard Foundation; and (15) Maue Kay Foundation, ongoing.
- 10. I have written six books concerning my work with elephants, including: (1) Portraits in the Wild: Behavior Studies of East African Mammals. (1975, Houghton Mifflin, Boston); (2) Portraits in the Wild: Behavior Studies of East African Mammals (Second Edition Revised, 1982, University of Chicago Press, Chicago); (3) Elephant Memories: Thirteen Years in the Life of an Elephant Family. (1988, William Morrow, New York, also in Swedish, Finnish, Dutch, Italian, French & Spanish editions); (4) Die Elefanten Vom Kilmandscharo. (1990, Rasch und Rohring, Hamburg, German edition of Elephant Memories, with an additional chapter covering 1987-90); (5) Echo of the Elephants. (1992, BBC Books, London, also in U.S., German and Japanese editions); (6) Little Big Ears: The Story of Ely. (1997, Simon & Schuster, New York).
- 11. I have served as co-editor for two books regarding my work with elephants: (1) Elephant Woman (with Laurence Pringle, 1997, Atheneum, New York), and (2) The Amboseli Elephants: A Long-Term Perspective on a Long-Lived Mammal (co-edited with H.J. Croze & P.C. Lee), 2011, University of Chicago Press, Chicago.)

- 12. Over the course of my career, I have also contributed chapters concerning elephant cognition and welfare to five additional books: (1) The World Book Encyclopedia (1991, Chicago: World Book); (2) Elephants: Majestic creatures of the wild (1992, editor J. Shoshani, Weldon Owen, Sydney); (3) The Smile of a Dolphin: Remarkable Accounts of Animal Emotions (2000, editor M. Bekoff, Discovery Books, New York); (4) Never Forgetting: Elephants and Ethics (2008, editors C. Wemmer and K. Christen, Johns Hopkins University Press); and (5) An Elephant in the Room: the Science and Well-being of Elephants in Captivity (2009, editor D. Forthman, Tufts University Press).
- 13. I have published 75 peer-reviewed scientific articles on the social structure, vocalization and communication (both short and long-range), cognition, mating behavior, maternal behavior, techniques for aging, determining diet and habitat use, mourning behavior, and elephant identification via sight and odor of human tribal groups. These articles have been published in many of the world's premier scientific journals and books, including: Nature, Science, PLoS One, Animal Behaviour, Behaviour, Journal of Wildlife Management, Behavioral Ecology and Sociobiology, Pachyderm, Journal of Zoology, Mammalian Social Learning, Molecular Ecology Notes, Biology Letters, Molecular Ecology, Current Biology, Journal of Consciousness Studies, Animal Welfare, and the Journal of Wildlife Diseases. My scientific work has also been published in: Symposium of the Zoological Society of London, Proceedings 2nd International NCRR Conference, A Research Update on Elephants and Rhinos: Proceedings of the International Elephant and Rhino Research Symposium, and Proceedings of the Royal Society B. Specific topics of these publications include: musth in the African elephant, oestrus behavior and female choice in the African elephant, age estimation and population age structure of elephants from footprint dimensions, early maternal investment in male and female African elephant calves, social context of some very low frequency calls of African elephants, isotopic tracking of change in diet and habitat use in African elephants, statural growth in known-age African elephants, social context for learning and behavioural development among wild African elephants, matriarchs as repositories of social knowledge in African elephants, characterization of tetranucleotide microsatellite loci in the African Savannah Elephant, long-distance communication of cues to social identity in African

elephants, locus size predicts the rate of allelic dropout in two large-scale noninvasive genotyping projects, early disruption of attachment can affect the physiology, behavior, and culture of animals and humans over generations, genetic relatedness predicts fission and fusion of social groups in wild African elephants, elephants show high levels of interest in the skulls and ivory of their own species, elephants classify human ethnic groups by odour and garment colour, can elephants show empathy, and fecundity and population viability in female zoo elephants.

- 14. In addition to my scientific publications, I have also published 30 articles in more general audience publications, including: Smithsonian, New York Times Book Review, BBC Wildlife, New Scientist, the Sunday Times Magazine, Australian Women's Weekly, Wildlife News, Ms., Swara, International Wildlife, Wildlife, Animal Kingdom, Nature's Best, ASPCA's Animal Watch, Disney's Animal Kingdom, and Geospatial Solutions.
- 15. In addition to my academic and general audience articles, I have also written film scripts and provided scientific consulting for several films, including: (1) "Echo of the Elephants" (1990-1992, BBC Natural History Unit, received awards at Jackson Hole Wildlife Film Festival and Italian Film Festival); (2) "Echo of the Elephants: The Next Generation" (1992-1995, BBC Natural History Unit); (3) "Africa's Forgotten Elephants" (1996-1997, Scorer Associates for BBC); (4) "Echo of the Elephants: The Last Chapter?" (2002-2005, BBC Natural History Unit); (5) "Echo and the Elephants of Amboseli (2007-2008, Animal Planet, 13-part series); (6) "Echo: An Elephant to Remember" (2009-2010, BBC Natural History Unit); and (7) "An Apology to Elephants" (2013, HBO).
- 16. My Curriculum Vitae fully sets forth my educational background and experience and is attached as **Exhibit A**.

Basis for opinions

17. The opinions I state in this Declaration are based on my professional knowledge, education, training, and years of experience observing and studying elephants, as well as my knowledge of peer-reviewed literature about elephant behaviour and intelligence published in the world's most respected journals, periodicals and books that are generally accepted as

authoritative in the field, and many of which were written by myself or colleagues whom I have known for several years and with whose research and field work I am personally familiar. A full reference list of peer-reviewed literature cited herein is attached as **Exhibit B**.

Opinions

Premise

- 18. Autonomy in humans is defined as self-determined behaviour that is based on freedom of choice. As a psychological concept it implies that the individual is directing their behaviour based on some non-observable, internal cognitive process, rather than simply responding reflexively. Although we cannot directly observe these internal processes in other people, we can explore and investigate them by observing, recording and analysing behaviour. For non-human animals, observing similar behaviour and recording evidence of shared cognitive capacities should, parsimoniously, lead to similar conclusions about autonomy.
- 19. I shall indicate which species, African (*Loxodonta Africana*) or Asian (*Elephus maximus*), specific observations relate to. If the general term 'elephants' is used with no specific delineation, it can be assumed the comment relates to both species.

Brain And Development

20. Elephants are large-brained, with the biggest absolute brain size of any land animal (Cozzi et al 2001; Shoshani et al 2006). Even relative to their body sizes, elephant brains are large. Encephalization quotients (EQ) are a standardised measure of brain size relative to body size, and illustrate by how much a species' brain size deviates from that expected for its body size. An EQ of one means the brain is exactly the size expected for that body, and values greater than one indicate a larger brain than expected (Jerison 1973). Elephants have an EQ of between 1.3 and 2.3 (varying between sex and African and Asian species). This means an elephant's brain can be up to two and a half times larger than is expected for an animal of its size; this EQ is similar to that of the great apes, with whom elephants have not shared a common ancestor for almost 100 million years (Eisenberg 1981, Jerison 1973). Given how metabolically costly brain tissue is, the large brains of elephants must confer significant advantages; otherwise their

size would be reduced. Presumably this advantage is allowing greater intelligence and behavioural flexibility (Bates et al 2008a).

- 21. Generally, mammals are born with brains weighing up to 90% of the adult weight. This figure drops to about 50% for chimpanzees. Human baby brains weigh only about 27% of the adult brain weight (Dekaban & Sadowsky 1978). This long period of brain development over many years (termed 'developmental delay') is a key feature of human brain evolution and is thought to play a role in the emergence of our complex cognitive abilities, such as self-awareness, creativity, forward planning, decision making and social interaction (Bjorkland 1997). Delayed development provides a longer period in which the brain may be shaped by experience and learning (Fuster 2002). Elephant brains at birth weigh only about 35% of their adult weight (Eltringham 1982), and elephants show a similarly protracted period of growth, development and learning (Lee 1986). This similar developmental delay in the elephant brain is therefore likely associated with the emergence of similarly complex cognitive abilities.
- 22. Despite nearly 100 million years of separate evolution (Hedges 2001), elephants share certain characteristics of our large brains, namely deep and complex folding of the cerebral cortex, large parietal and temporal lobes, and a large cerebellum (Cozzi et al 2001). The temporal and parietal lobes of the cerebral cortex manage communication, perception, and recognition and comprehension of physical actions (Kolb and Whishaw 2008), while the cerebellum is involved in planning, empathy, and predicting and understanding the actions of others (Barton 2012). Thus, the physical similarities between human and elephant brains occur in areas that are relevant to capacities necessary for autonomy and self-awareness.
- 23. Elephant brains hold nearly as many cortical neurons as do human brains, and a much greater number than chimpanzees or bottlenose dolphins (humans: 1.15×10^{10} ; elephants: 1.1×10^{10} , chimpanzees: 6.2×10^9 ; dolphins: 5.8×10^9 , Roth & Dicke 2005). Elephants' pyramidal neurons (a class of neuron that is found in the cerebral cortex, particularly the prefrontal cortex the brain area that controls executive functions) are larger than in humans and most other species (Cozzi et al 2001). The degree of complexity of pyramidal neurons is linked to cognitive ability, with more (and more complex) connections between pyramidal neurons being associated with increased cognitive capabilities (Elston 2003). Elephant pyramidal

neurons have a large dendritic tree, i.e. a large number of connections with other neurons for receiving and sending signals (Cozzi et al 2001).

- 24. Elephants, like humans, great apes and some cetaceans, possess *von Economo neurons*, or spindle cells the so-called 'air-traffic controllers for emotions' in the anterior cingulate, fronto-insular, and dorsolateral prefrontal cortex areas of the brain (Hakeem et al 2009). In humans, these cortical areas are involved among other things in the processing of complex social information, emotional learning and empathy, planning and decision-making, and self-awareness and self-control (Allman et al 2001; Allman et al 2002; Allman et al 2011). The shared presence of spindle cells in the same brain locations in elephants and humans strongly implies these higher-order brain functions the building blocks of autonomous, self-determined behaviour are common between these species (Butti et al 2009; Hakeem et al 2009).
- 25. As described below, evidence demonstrates that along with these common brain and life-history characteristics, elephants share many behavioural and intellectual capacities with humans, including: self-awareness, empathy, awareness of death, intentional communication, learning, memory, and categorisation abilities. Many of these capacities have previously been considered erroneously to be uniquely human, and each is fundamental to and characteristic of autonomy and self-determination.

Awareness Of Self And Others

26. Asian elephants have been shown to exhibit Mirror Self Recognition (MSR) using Gallup's classic 'mark test' (Gallup 1970; Plotnik et al 2006). MSR is the ability to recognise a reflection in the mirror as oneself, and the mark test involves surreptitiously placing a coloured mark on an individual's forehead that it could not see or be aware of without the aid of a mirror. If the individual uses the mirror to investigate the mark, it is logical to assume that the individual recognises the reflection as itself. Almost all animals tested on this task fail: they do not recognise the image in the mirror as being a reflection of themselves. Indeed, the only other mammals beyond humans who have successfully passed the mark test and exhibit MSR are the great apes (chimpanzees, bonobos, gorillas and orangutans) and bottlenose dolphins

(Parker and Mitchell 1994, Reiss and Marino 2001). MSR is significant because it is considered to be the key identifier of self-awareness. Self-awareness is intimately related to autobiographical memory in humans (Prebble et al 2013), and is central to autonomy and being able to direct one's own behaviour to achieve personal goals and desires. By demonstrating that they can recognize themselves in a mirror, elephants must be holding a mental representation of themselves from another perspective, and thus be aware that they are a separate entity from others (Bates and Byrne 2014).

27. Related to possessing a sense of self is an understanding of death. Observing reactions to dead family or group members suggests an awareness of death in only two animal genera beyond humans; chimpanzees and elephants (Anderson et al 2010, Douglas-Hamilton et al 2006). Having a mental representation of the self – a pre-requisite for mirror-self recognition – probably also confers an ability to comprehend death. Wild African elephants have been shown experimentally to be more interested in the bones of dead elephants than the bones of other animals (McComb et al 2006), and they have frequently been observed using their tusks, trunk or feet to attempt to lift sick, dying or dead individuals (Poole & Granli 2011). Although they do not give up trying to lift or elicit movement from the body immediately, elephants appear to realise that once dead, the carcass cannot be helped anymore, and instead they engage in more 'mournful' behaviour, such as standing guard over the bodies, and apparently protecting it from the approaches of predators (Poole & Granli 2011They also have been observed to cover the bodies of dead elephants with dirt and vegetation (Moss 1992; Poole 1996). In the particular case of mothers who lose a calf, although they may remain with the calf's body for an extended period, they do not behave towards the body as they would a live calf. Indeed, the general demeanour of elephants who are attending to a dead elephant is one of grief and compassion, with slow movements and few vocalisations (Poole, pers. comm.). These behaviours are akin to human responses to the death of a close relative or friend, and illustrate that elephants possess some understanding of life and the permanence of death.

28. The capacity for mentally representing the self as an individual entity has been linked to general empathic abilities (Gallup 1982), where empathy can be defined as identifying

with and understanding another's experiences or feelings by imagining what it would be like to be in their situation. Empathy is an important component of human consciousness and autonomy, and is a cornerstone of normal social interaction. It goes beyond merely reading the emotional expressions of others. It requires modelling of the emotional states and desired goals that influence others' behaviour both in the past and future, and using this information to plan one's own actions; empathy is only possible if one can adopt or imagine another's perspective, and attribute emotions to that other individual (Bates et al 2008b). Empathy is, therefore, a component of and reliant on 'Theory of Mind' – the ability to mentally represent and think about the knowledge, beliefs and emotional states of others, whilst recognising that these can be distinct from your own knowledge, beliefs and emotions (Premack and Woodruff (1978)/Frith and Frith 2005).

- 29. Elephants clearly and frequently display empathy in the form of protection, comfort and consolation, as well as by actively helping those who are in difficulty, such as assisting injured individuals to stand and walk, or helping calves out of rivers or ditches with steep banks (Bates et al 2008b, Lee 1987). Elephants have even been observed feeding those who are not able to use their own trunks to eat (Poole and Granli 2011).
- 30. In an analysis of behavioural data collected from wild African elephants over a 43-year continuous field study, we concluded that as well as possessing their own intentions, elephants can diagnose animacy and goal directedness in others, understand the physical competence and emotional state of others, and attribute goals and mental states (intentions) to others (Bates et al 2008b), as evidenced in the examples below:

'IB family is crossing river. Infant struggles to climb out of bank after its mother. An adult female [not the mother] is standing next to calf and moves closer as the infant struggles. Female does not push calf out with its trunk, but digs her tusks into the mud behind the calf's front right leg which acts to provide some anchorage for the calf, who then scrambles up and out and rejoins mother.'

'At 11.10ish Ella gives a 'lets go' rumble as she moves further down the swamp. . . . At 11.19 Ella goes into the swamp. The entire group is in the swamp

except Elspeth and her calf [<1 year] and Eudora [Elspeth's mother]. At 11.25

Eudora appears to 'lead' Elspeth and the calf to a good place to enter the swamp

— the only place where there is no mud.'

Examples such as these demonstrate that the acting elephant (the adult female in the first example, and Eudora (also an adult female, the calf's grandmother) in the second) was able to understand the intentions of the other (the calf in the first case, and Elspeth in the second) – i.e. to either climb out of or into the water – and they could adjust their own behaviour in order to counteract the problem being faced by the other. Whilst humans may act in this helpful manner on a daily basis, such interactions have been recorded for very few non-human animals (Bates et al 2008b).

31. Experimental evidence from captive African elephants further demonstrates that elephants attribute intentions to others, as they follow and understand human pointing gestures - the only animal so far shown to do so spontaneously. The elephants understood that the human experimenter was pointing in order to communicate information to them about the location of a hidden object (Smet and Byrne 2013). Attributing intentions and understanding another's reference point is central to empathy and theory of mind.

32. Evidence of 'natural pedagogy' is rare among non-human animals, with only a few potential examples of true teaching (whereby the teacher takes into account the knowledge states of the learner as they pass on relevant information) recorded anecdotally in chimpanzees (Boesch 1991) and killer whales (Guinet and Bouvier 1995)¹. Teaching is therefore still widely considered to be unique to humans (Csibra and Gergely 2009). Our analysis of simulated oestrus behaviours in African elephants – whereby a non-cycling, sexually experienced older female will simulate the visual signals of being sexually receptive, even though she is not ready to mate or breed again – shows that these knowledgeable females adopt false oestrus behaviours in order to demonstrate to naïve young females how to attract and respond appropriately to suitable males. The experienced females may be taking the youngsters lack of

11

_

¹ Functional teaching has been experimentally demonstrated in various animal species including ants, babblers, meerkats, cheetahs and some primates, but this is not the same as deliberate pedagogy, as it does not rely on representing the knowledge states of the learners.

knowledge into account and actively showing them what to do; a possible example of true teaching as it is defined in humans. Whilst this possibility requires further investigation, this evidence, coupled with the data showing that they understand the ostensive cues in human pointing, suggests that elephants do share some executive skills with humans, namely understanding the intentions and knowledge states (minds) of others.

- 33. Further related to empathy, coalitions and cooperation have been documented in wild African elephants, particularly to defend family members or close allies from (potential) attacks by outsiders, such as when a family group tries to 'kidnap' a calf from an unrelated family (Lee 1987, Moss and Poole 1983). These behaviours are based on one elephant understanding the emotions and goals of the coalition partner (Bates et al 2008b).
- 34. Cooperation is also evident in experimental tests with captive Asian elephants, whereby elephants demonstrated they can work together in pairs to obtain a reward, and understood that it was pointless to attempt the task if their partner was not present or could not access the equipment (Plotnik et al 2011). Problem-solving and working together to achieve a collectively desired outcome involve mentally representing both a goal and the sequence of behaviours that is required to achieve that goal; it is based on (at the very least) short-term action planning.
- 35. Wild elephants have frequently been observed engaging in cooperative problem solving, for example when retrieving calves that have been kidnapped by other groups, or when helping calves out of steep, muddy river banks (Bates et al 2008b, Moss 1992) These behaviours demonstrate the purposeful and well-coordinated social system of elephants, and show that elephants can hold particular aims in mind and work together to achieve those goals. Such intentional, goal-directed action forms the foundation of independent agency, self-determination, and autonomy.
- 36. Elephants also show innovative problem solving in experimental tests of insight (Foerder et al 2011), where insight can be defined as the 'a-ha' moment when a solution to a problem 'suddenly' becomes clear. (In cognitive psychology terms, insight is the ability to inspect and manipulate a mental representation of something, even when you can't physically perceive or touch the something at the time. Or more simply, insight is thinking and using only

thoughts to solve problems (Byrne 2016). A juvenile male Asian elephant demonstrated just such a spontaneous action by moving a plastic cube and standing on it to obtain previously out-of-reach food. After solving this problem once, he showed flexibility and generalization of the technique to other, similar problems by using the same cube in different situations, or different objects in place of the cube when it was not available. This experiment again demonstrates that elephants can choose the appropriate action and incorporate it into a sequence of behaviour in order to achieve a goal, which they kept in mind throughout the process.

37. Further experiments also demonstrate Asian elephants ability to understand goal-directed behaviour. When presented with food that was out of reach, but with some bits resting on a tray that could be pulled within reach, the elephants learned to pull only those trays that were baited with food (Irie-Sugimoto et al 2008). Success in this kind of 'means-end' task is a demonstration of causal knowledge, which requires understanding not just that two events are associated with each other but also that there is some mediating force that connects and affects the two which may be used to predict and control events. Moreover, understanding causation and inferring object relations may be related to understanding psychological causation, i.e., the appreciation that others are animate beings that generate their own behaviour and have mental states (e.g., intentions).

Communication and social learning

38. Speech is a voluntary behaviour in humans, whereby a person can choose whether to utter words and thus communicate with another. Therefore speech and language are reflections of autonomous thinking and intentional behaviour. Elephants also use their vocalisations to share knowledge and information with others, apparently intentionally (Poole 2011). Male elephants primarily communicate about their sexual status, rank and identity, whereas females and dependents call to emphasise and reinforce their social units. Call types can generally be separated into laryngeal calls (such as rumbles) or trunk calls (such as trumpets), with different calls in each category being used in different contexts (Poole 2011; Poole and Granli 2004; Soltis et al 2005; Wood et al 2005). Field experiments have shown that African elephants distinguish between different call types (for example, contact calls – rumbles

that travel long distances to maintain associations between elephants that could be several kilometres apart, or oestrus rumbles – that occur after a female has copulated) and these different call types elicit different responses in the listeners. Elephant vocalisations are not simply reflexive, they have distinct meanings to listeners and they are truly communicative, similar to the volitional use of language in humans (Leighty et al 2008; Poole 1999; Poole 2011).

- 39. Furthermore, elephants have been shown to vocally imitate the sounds they hear around them, from the engines of passing trucks to the commands of human zookeepers (Poole et al 2005, Stoeger et al 2012). Imitating another's behaviour is demonstrative of a sense of self, as it is necessary to understand how one's own behaviour relates to the behaviour of others.
- 40. Elephants display a wide variety of gestures, signals and postures, used to communicate information to the audience (Poole and Granli gestures chapter 2011). Such signals are adopted in many different contexts, such as aggressive, sexual or socially integrative situations, and each signal is well defined and results in predictable responses from the audience. That is, each signal or gesture has a specific meaning both to the actor and recipient. Elephants' use of gestures demonstrates that they communicate intentionally and purposefully to share information with others and/or alter the others' behaviour to fit their own will.
- 41. Experimental evidence demonstrates that African elephants recognize the importance of visual attentiveness of the intended recipient (in this case, human experimenters) of gestural communication (Smet & Byrne 2014), further supporting the suggestion that elephants' gestural communication is intentional and purposeful. Furthermore, the ability to understand the visual attentiveness and perspective of others is crucial for empathy and mental-state understanding.

Memory And Categorisation

42. Elephants have both extensive and long-lasting memories, just as the folk stories and adages encourage us to believe. McComb et al. (2000), using experimental playback of long-distance contact calls in Amboseli National Park, Kenya, showed that African elephants remember and recognize the voices of at least 100 other elephants. Each adult female elephant

tested was familiar with the contact-call vocalizations of individuals from an average of 14 families in the population. When the calls were from a familiar family— that is, one that had previously been shown to have a high association index with the test group—the test elephants contact-called in response and approached the location of the loudspeaker. When a test group heard unfamiliar contact calls (from groups with a low association index with the test group), they bunched together and retreated from the area.

- 43. McComb et al (2001) went on to show that this social knowledge accrues with age, with older females having the best knowledge of the contact calls of other family groups. McComb et al (2011) also showed that older females are better leaders, with more appropriate decision-making in response to potential threats (in this case, in the form of hearing lion roars). Younger matriarchs under-reacted to hearing roars from male lions, potential predators of elephant calves. Sensitivity to hearing this sound increased with increasing matriarch age, with the oldest, most experienced females showing the strongest response to this danger. These experimental studies show that elephants continue to learn and remember information about their environments throughout their lives, and this accrual of knowledge allows them to make better decisions and better lead their families as they grow older.
- 44. Further demonstration of elephants' long-term memory comes from data on their movement patterns. African elephants are known to move over very large distances in their search for food and water. Leggett (2006) used GPS collars to track the movements of elephants living in the Namib Desert. He recorded one group traveling over 600 km in five months, and Viljoen (1989) showed that elephants in the same region visited water holes approximately every four days, even though some of them were more than 60km apart. Elephants inhabiting the deserts of both Namibia and Mali have been described traveling hundreds of kilometers to arrive at remote water sources shortly after the onset of a period of rainfall (Blake et al. 2003; Viljoen 1989), sometimes along routes that researchers believe have not been used for many years. These remarkable feats suggest exceptional cognitive mapping skills, reliant on the long-term memories of older individuals who traveled that path sometimes decades earlier. Indeed it has been confirmed that family groups with older matriarchs are better able to survive periods of drought. The older matriarchs lead their families over larger areas during droughts than those

with younger matriarchs, again apparently drawing on their accrued knowledge (this time about the locations of permanent, drought-resistant sources of food and water) to better lead and protect their families (Foley, Pettorelli, and Foley 2008).

- 45. It has recently been shown that long-term memories, and the decision-making mechanisms that rely on this knowledge, are severely disrupted in elephants who have experienced trauma or extreme disruption due to 'management' practices initiated by humans. Shannon et al (2013) demonstrated that elephants in South Africa who had experienced trauma decades earlier showed significantly reduced social knowledge. During archaic culling practices, these elephants were forcibly separated from family members and subsequently translocation to new locations. Two decades later, they still showed impoverished social knowledge and skills and impaired decision-making abilities, compared with an undisturbed population in Kenya. Disrupting elephants' natural way of life can negatively impact their knowledge and decision-making abilities.
- 46. Elephants demonstrate advanced 'working memory' skills. Working memory is the ability to temporarily store, recall, manipulate and coordinate items from memory. Working memory directs attention to relevant information, and results in reasoning, planning, and coordination and execution of cognitive processes through use of a 'central executive' (Baddeley 2000). Adult human working memory is generally thought to have a capacity of around seven items. In other words, we can keep about seven different items or pieces of information in mind at the same time (Miller 1956). We conducted experiments with wild elephants in Amboseli National Park, Kenya, manipulating the location of fresh urine samples from related or unrelated elephants. The elephants' responses to detecting urine from known individuals in surprising locations showed that they are able to continually track the locations of at least 17 family members in relation to themselves, as either absent, present in front of self, or present behind self (Bates et al. 2008a). This remarkable ability to hold in mind and regularly update information about the locations and movements of a large number of family members is best explained by predicting that elephants possess an unusually large working memory capacity, apparently much larger than that of humans.
 - 47. Elephants show sophisticated categorisation of their environment, with skills on a

par with those of humans. We experimentally presented the elephants of Amboseli National Park, Kenya, with garments that gave olfactory or visual information about their human wearers – either Maasai moran (male warriors who traditionally attack and spear elephants on occasion as part of their rite of passage), or Kamba men (who are agriculturalists and traditionally pose little threat to elephants). In the first experiment, the only thing that differed between the cloths was the smell, derived from the ethnicity and/or lifestyle of the wearers. The elephants were significantly more likely to run away when they sniffed cloths worn by Maasai than those worn by Kamba men or no one at all. In a second experiment, we presented the elephants with two cloths that had not been worn by anyone, but here one was white (a neutral stimulus) and the other was red—the color that is ritually worn by Maasai moran. With access only to these visual cues, the elephants showed significantly greater reaction to red garments than white, often including signs of aggression. We concluded that elephants are able to categorize a single species (humans) into sub-classes (i.e. 'dangerous' or 'low risk') based on either olfactory or visual cues alone (Bates et al. 2007). McComb et al went on to show that the same elephants can also distinguish between human groups based on our voices. The elephants reacted differently (and appropriately) depending on whether they heard Maasai or Kamba men speaking, and also when they heard male or female Maasai (where female Maasai pose no threat as they are not involved in spearing events), and adult Maasai men or young Maasai boys (McComb et al 2014). Scent, sounds and visual signs associated specifically with Maasai men are categorized as 'dangerous', while neutral signals are attended to but categorized as 'low risk'. These sophisticated, multi-modal categorization skills may be exceptional among non-human animals.

Summary

48. Both African and Asian elephants evidently share many key traits of autonomy with humans, and so parsimoniously it must be concluded that elephants are also autonomous beings.

49. Scientific knowledge about elephant intelligence has been increasing rapidly in the past decade: what we currently know is only a tiny fraction of what elephant brains are likely capable of, and yet more amazing abilities are still likely to be discovered.

I declare under penalty of perjury under the law of the Commonwealth of Pennsylvania that the foregoing is true and correct.

Signed on the loth day of June.,
at Namob, Kenya
(date) 10 (month) 6 (year) 2025
(county or other location, and state). Languta, New obj.
(country) Kenya
(printed name) Cynthia J. Moss
(signature) Cypt J. Mo-

CURRICULUM VITAE

NAME: Cynthia J. Moss

ADDRESS: P.O. Box 15135

Langata 00509 Nairobi, Kenya

Tel: +254 722 208 762

E-mail: cmoss@elephanttrust.org

DATE OF BIRTH: July 24, 1940

PLACE OF BIRTH: Ossining, New York

NATIONALITY: U.S.A. (resident of Kenya)

EDUCATION: BA, Smith College, 1962; D.Sc., Smith College, 2002

PRESENT POSITION: Director, Amboseli Elephant Research Project

Amboseli Trust for Elephants

PROFESSIONAL HISTORY:

1972-present: Director Amboseli Elephant Research Project and since **2001** Director of the Amboseli Trust for Elephants. Set up long-term research project on the elephant population in the Amboseli ecosystem in southern Kenya. Conducted research on the distribution, demography, population dynamics, social organization and behavior of the Amboseli elephants. Present activities include: directing and supervising research and monitoring; training elephant researchers from African elephant range states; outreach to Maasai community; carrying out surveys and training courses at other elephant study sites in Africa; disseminating scientific results; advocating for elephant welfare; promoting public awareness by writing popular articles and books and by making films about elephants; fund raising for and administering Project.

1971-1985: Editor of African Wildlife Foundation's Wildlife News.

1970-1971: Part-time work as freelance journalist, mainly for *Time* and *Life* magazines.

1969-1970: Research assistant to Drs. A.M. and S. Harthoorn, veterinary research, Nairobi, 6 months; compiled and wrote a 75-page report on elephants for Cinema Center Films' "The African Elephant", 6 months; research assistant to Dr. V. Finch, environmental physiology project on eland, hartebeest, zebra, wildebeest, ostrich, and Boran cattle, Athi Plains, Kenya, 2 months; research assistant to Dr. J.B. Sale, U. of Nairobi, feeding ecology of elephants in Tsavo National Park, Kenya, 2 months.

1968: Research Assistant to Dr. I. Douglas-Hamilton, elephant behaviour and ecology, Lake Manyara National Park, Tanzania, 8 months. (Subsequently worked on the project for shorter periods in 1969, 1970, and 1971.)

1964-1968: Reporter/Researcher, *Newsweek* Magazine, New York.

GRANTS, FELLOWSHIPS, AWARDS:

1975 African Wildlife Foundation grant

1978 - 1979 Midgard Foundation grant

1979 - 1984 Research Fellow, grants, New York Zoological Society

1982 Portraits in the Wild nominated for American Book Award for best

science paperback of the year

1985 Smith College Medal for alumnae achievement

1993 "Echo of the Elephants" received awards at Jackson Hole Wildlife

Film Festival and Italian Film Festival.

1996-2006 Disney Conservation Foundation grants

1996-1999 Delano Foundation grants

1997 Elected Fellow of the Royal Geographic Society

1998 Little Big Ears received an award from the John Burroughs

Foundation and the American Museum of Natural History

1999 Conservation Excellence Award from the Oakland Zoo1999 Centennial Conservation Award from Woodland Park Zoo

1999, 2000, 2001 Sabbatical fellowships at National Center for Ecological Analysis &

Synthesis, University of California, Santa Barbara

2000 Howard Gilman Foundation grant

2001-ongoing Advisor to the International Fund for Animal Welfare
 2001 Elected Fellow of the Society of Women Geographers
 2002-2007 John D. & Catherine T. MacArthur Foundation Fellowship
 2002 Award from Performing Animal Welfare Society (PAWS)

2002 Smith College Honorary Doctorate Degree

2002 Distinguished Conservation Fellow Award, LA Zoo2004 Guardian Award from In Defense of Animals

2005 Conservation Award, Cincinnati Zoo

PROFESSIONAL ACTIVITIES:

1988-1996 IUCN/SSC African Elephant Specialist Group member **Ongoing:** Lectures on elephant social organization and behaviour to

university students, wildlife club members, and specialist

groups in Kenya, India, U.S., and U.K.

Ongoing: Consultant to conservation groups, animal welfare organizations,

zoos and others on elephant-related issues

MEMBERSHIPS:

American Museum of Natural History

Authors Guild

East African Natural History Society

East African Wild Life Society

Flying Doctors Society of Kenya

Kenya Society for the Protection & Care of Animals

PEN America

Royal Geographic Society (Fellow)

Society of Women Geographers (Fellow)

Explorers Club (Fellow)

PUBLICATIONS

BOOKS:

Moss, Cynthia (1975) *Portraits in the Wild: Behavior Studies of East African Mammals.* Houghton Mifflin, Boston.

(1982) *Portraits in the Wild: Behavior Studies of East African Mammals* (Second Edition - Revised). University of Chicago Press, Chicago.

(1988) Elephant Memories: Thirteen Years in the Life of an Elephant Family. William Morrow, New York. (Also in Swedish, Finnish, Dutch, Italian, French & Spanish editions.) (1990) Die Elefanten Vom Kilmandscharo. Rasch und Rohring, Hamburg (German edition of Elephant Memories, with an additional chapter covering 1987-90). (1992) Echo of the Elephants. BBC Books, London. (Also in U.S., German and Japanese editions.)

(1997) Little Big Ears: The Story of Ely. Simon & Schuster, New York.

Pringle, Laurence & Moss, Cynthia (1997) Elephant Woman. Atheneum, New York.

Moss, C.J. & Croze, H.J. (eds) (2011) *The Amboseli Elephants: A Long-Term Perspective on a Long-Lived Mammal.* University of Chicago Press, Chicago.

BOOK CHAPTERS:

Moss, Cynthia (1991) Elephant. In: *The World Book Encyclopedia*, Chicago: World Book, pp. 224-230.

(1992) Elephant calves: the story of two sexes. In: Shoshani, J. (ed) *Elephants: Majestic creatures of the wild.* Weldon Owen, Sydney, 106-113.

(2000) A passionate devotion. In: Bekoff, M. (ed) *The Smile of a Dolphin: Remarkable Accounts of Animal Emotions.* Discovery Books, New York, 134-137.

Poole, J.H. & **Moss, C.J.** (2008) Elephant sociality and complexity: the scientific evidence. In: Never Forgetting: Elephants and Ethics. C. Wemmer & K. Christen (Eds). Johns Hopkins University Press, pp 69-98.

Lee, P.C. & **Moss, C.J.** (2009). Welfare and well-being of captive elephants: perspectives from wild elephant life histories. In: Forthman, D. (Ed) *An Elephant in the Room: the Science and Well Being of Elephants in Captivity*. Tufts University Press, MA.

SCIENTIFIC PUBLICATIONS IN JOURNALS AND BOOKS:

- 1. Poole, J.H. & **Moss, C.J.** (1981) Musth in the African elephant, Loxodonta africana. *Nature*, 292, 830-831.
- 2. Douglas-Hamilton, I., Hillman, A.K.K. & **Moss, C.J.** (1981) Notes on vertical photography of elephants for age determination. *ILCA Monographs*, 4, 131-142.
- 3. **Moss, C.J.** & Poole, J.H. (1983) Relationships and social structure of African elephants. In *Primate Social Relationships: An Integrated Approach* (ed R.A. Hinde), pp. 315-325. Blackwell Scientific Publications, Oxford
- 4. Poole, J.H. & **Moss, C.J.** (1983) Musth discovered in the African elephant. *African Elephant and Rhino Newsletter,* 1:8.
- 5. **Moss, C.J.** (1983) Oestrous behaviour and female choice in the African elephant. *Behaviour*, 86, 167-196.
- 6. Western, D., **Moss, C.J.** & Georgiadis, N. (1983) Age estimation and population age structure of elephants from footprint dimensions. *JWildlManage*, 47, 1192-1197.

- 7. Lee, P.C. & **Moss, C.J**. (1986) Early maternal investment in male and female African elephant calves. *BehavEcolSociobiol*, 18, 353-361.
- 8. Poole, J.H., Payne, K., Langbauer Jr., W.R. & **Moss, C.J.** (1988) The social context of some very low frequency calls of African elephants. *BehavEcolSociobiol*, 22, 385-392.
- 9. Poole, J.H. & **Moss, C.J.** (1990) Elephant mate searching: group dynamics and vocal and olfactory communication. *Symposium of the Zoological Society of London*, 61, 111-125.
- 10. **Moss, C.J.** (1990) Elephants in Tarangire. *Pachyderm*, 13, 26-30.
- 11. **Moss, C.J.** (1991) Garamba *National Park elephant age structure survey*. Amboseli Elephant Research Project Report,
- 12. **Moss, C.J.** (1991) Chobe *National Park elephant age structure survey*. Report to Dept. of Wildl. & Nat. Parks, Botswana,
- 13. **Moss, C.J.** (1994) Some reproductive parameters in a population of African elephants, Loxodonta africana. In *Proceedings 2nd International NCRR Conference* (ed C.H. Bambra), pp. 284-292. Institute of Primate Research, Nairobi.
- 14. Koch, P.L., Heisinger, J., **Moss, C.**, Carlson, R.W., Fogel, M.L., & Behrensmeyer, A.K. (1995) Isotopic tracking of change in diet and habitat use in African elephants. *Science*, 267:1340-1343.
- 15. Lee, P.C. & **Moss, C.J.** (1995) Statural growth in known-age African elephants (*Loxodonta africana*). *J.Zool., Lond.* 236: 29-41.
- 16. **Moss, C.J.** (1996) Getting to know a population. In: Kangwana, K. (ed.), *Studying Elephants*. Nairobi: African Wildlife Foundation Technical Handbook Series, 7: 58-74.
- 17. Lee, P.C. & **Moss, C.J.** (1999) The social context for learning and behavioural development among wild African elephants. In: Box, H.O. & Gibson, K.R. (eds) *Mammalian Social Learning*. Cambridge University Press, Cambridge, 102-125.
- 18. McComb, K., Moss, C.J., Sayialel, S. & Baker, L. (2000) Unusually extensive networks of vocal recognition in African Elephants. *Animal Behaviour*, 59: 1103-1109.
- 19. Muruthi, P., Stanley Price, M, Soorae, P., **Moss, C.**, Lanjouw, A. (2000) Conservation of large mammals in Africa. What lessons and challenges for the future? In: Entwistle, A & Dunstone, N. (eds) *Priorities for Conservation of Mammalian Diversity. Has the Panda had its Day?* Cambridge University Press, Cambridge, 207-219.
- 20. McComb, K. **Moss, C.**, Durant, S.M., Baker, L. & Sayialel, S. (2001) Matriarchs as repositories of social knowledge in African elephants. *Science*, 292: 491-494.
- 21. **Moss, C.J.** (2001) The demography of an African elephant (*Loxodonta africana*) population in Amboseli, Kenya. *J. Zool., Lond. 255: 145-156*
- 22. **Moss, C.J.** (2002) Elephant research in Amboseli: a perspective from 28 years. In: Schwammer, H.M, Foose, T.J., Fouraker, M, & Olson, D. (eds) *A Research Update on Elephants and Rhinos: Proceedings of the International Elephant and Rhino Research Symposium, Vienna, June 7-11, 2001, Schuling, Munster, 96-102.*
- 23. Archie, E.A., **Moss, C.J.** and Alberts, S.C. (2003) Characterization of tetranucleotide microsatellite loci in the African Savannah Elephant (*Loxodonta africana africana*). *Molecular Ecology Notes*, 3: 244-246.
- 24. McComb, K., Reby, D., Baker, L., **Moss, C.** & Sayialel, S. (2003) Long-distance communication of cues to social identity in African elephants. *Animal Behaviour*, 65: 317-329.
- 25. Morrison, T.A., Chiyo, P., **Moss, C.J.**, & Alberts, S.C. (2005). Measures of dung bolus size for known age African elephants: implications for age estimation. *Journal of Zoology*, (London) 266: 89-94.
- 26. Buchan, J.C., Archie, E.A., Van Horn, R.C., **Moss, C.J.**, Alberts, S.C. (2005) Locus size predicts the rate of allelic dropout in two large-scale noninvasive genotyping projects. *Molecular Ecology Notes*.

- 27. Bradshaw, G.A., A.N. Schore, J.L. Brown, J. H. Poole & **C. J. Moss**. (2005) Elephant Breakdown. Social trauma: Early disruption of attachment can affect the physiology, behaviour and culture of animals and humans over generations. *Nature*, 433: 807.
- Archie, E.A., Morrison, T.A., Foley, C.A.H., Moss, C.J. & Alberts, S.C. (2006) Dominance rank relationships among wild female African elephants, Loxodonta africana. *Animal Behaviour*, 71: 117-127.
- 29. Archie, E.A., **Moss, C.J.** & Alberts, S.C. (2006) The ties that bind: genetic relatedness predicts fission and fusion of social groups in wild African elephants. *Proceedings of the Royal Society B,* 273:513-522.
- 30. McComb, K. Baker, L., & **Moss, C.** (2006) Elephants show high level of interest in the skulls and ivory of their own species. *Biology.Letters*, 2: 26-28.
- 31. Archie, E.A., Hollister-Smith, J.A., Poole, J.H., Lee, P.H., **Moss, C.J.**, Maldonado, J.E., Fleischer, R.C., Alberts, S.C. (2007) Behavioural inbreeding avoidance in wild African elephants. *Molecular Ecology*, 16: 4128-4148.
- 32. Bates, L.A., Sayialel, K.N., Njiraini, N.W, Poole, J.H., **Moss, C.J.** & Byrne, R.W. (2007) Elephants classify human ethnic groups by odour and garment colour. *Current Biology*, doi:10.1016/j.cub.2007.09.060.
- 33. Bates, L.A., Sayialel, K.N., Njiraini, N.W, Poole, J.H., **Moss, C.J.** & Byrne, R.W. (2007) Elephants classify human ethnic groups by odour and garment colour. *Current Biology*, doi:10.1016/j.cub.2007.09.060.
- 34. Hollister-Smith, J.A., Poole, J.H., Archie, E.A., Vance, E.A, Georgiadis, N.J., **Moss, C.J.**, Alberts, S.C. (2007) Age, musth and paternity success in wild male African elephants, Loxodonta africana. *Animal Behaviour*, 74: 287-296.
- 35. Hollister-Smith, J.A., Poole, J.H., Archie, E.A., Vance, E.R., Georgiadis, N.J., **Moss, C.J.**, & Alberts, S.C. (2007). Older is better: reproductive success increases with age in wild male African elephants. *Animal Behaviour*, 74: 287-296.
- 36. Archie, E.A., Maldonado, J.E., Hollister-Smith, J.A., Poole, J.H., **Moss, C.J.**, Fleischer, R.C., Alberts, S.C. (2008) Fine-scale population genetic structure in a fission-fusion society. *Molecular Ecology*, 17: 2666-2679.
- 37. Bates, L.A., Lee, P.C. Njiraini, N., Poole, J.H., Sayialel, K, Sayialel, S., **Moss, C.J.** & Bryne, R.W. (2008) Do elephants show empathy? *Journal of Consciousness Studies,* 15, No 10-11: 204-225.
- 38. Bates, L.A., Sayialel, K.N, Njiraini, N.W, Poole, J.H., **Moss, C.J.** & Byrne, R.W. (2008) Elephants have expectations about the locations of out-of-sight family members. *Biology Letters* 4: 34-36.
- *39.* Clubb, R. Rowcliffe, M. Lee, P., Mar, K. U., **Moss, C.**, Mason, G.J. (2008) Compromised survivorship in zoo elephants. *Science* 322: 1649
- 40. Clubb, R. Rowcliffe, M. Lee, P., Mar, K. U., **Moss, C.**, Mason, G.J. (2009) Fecundity and population viability in female zoo elephants: problems and possible solutions. *Animal Welfare* 18: 237-247.
- 41. Bates, L A, Handford, R, Lee, P C, Njiraini, N, Poole, J H, Sayialel, K, Sayialel, S, **Moss, C J** and Byrne R W (2010) Why do African elephants (*Loxodonta africana*) simulate oestrus? An analysis of longitudinal data. PLoS-ONE, 5, Issue 4, e10052, doi:10.1371/journal.pone.0010052.
- 42. McLean, E.R., Kinsella, J.M., Chiyo, P., Obanda, V., **Moss, C**. & Archie, E.A. (2012) Genetic identification of five stronggyle nematode parasites in wild Afircan elephants (*Loxodonta Africana*). Journal of Wildlife Disease, 49(3): 707-716.
- 43. Age determination by back length for African savanna elephants: extending age assessment techniques for aerial-based surveys. Trimble MJ, van Aarde RJ, Ferreira SM, Nørgaard CF, Fourie J, Lee PC, **Moss CJ**. PLoS One. 2011;6(10):e26614. doi: 10.1371/journal.pone.0026614. Epub 2011 Oct 19.

- 44. The influence of life history milestones and association networks on crop-raiding behavior in male African elephants. Chiyo PI, **Moss CJ**, Alberts SC. PLoS One. 2012;7(2):e31382. doi: 10.1371/journal.pone.0031382. Epub 2012 Feb 8. PMID: 22347468 [PubMed indexed for MEDLINE] Free PMC Article
- 45. Wild female African elephants (Loxodonta africana) exhibit personality traits of leadership and social integration. Lee PC, **Moss CJ**. J Comp Psychol. 2012 Aug;126(3):224-32. doi: 10.1037/a0026566. PMID: 22905995 [PubMed indexed for MEDLINE]
- 46. Enduring consequences of early experiences: 40 year effects on survival and success among African elephants (Loxodonta africana). Lee PC, Bussière LF, Webber CE, Poole JH, **Moss CJ**. Biol Lett. 2013 Feb 13;9(2):20130011. doi: 10.1098/rsbl.2013.0011. Print 2013 Apr 23. PMID: 23407501 [PubMed indexed for MEDLINE]
- 47. The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants. Chiyo PI, Grieneisen LE, Wittemyer G, **Moss CJ**, Lee PC, Douglas-Hamilton I, Archie EA. PLoS One. 2014 Apr 4;9(4):e93408. doi: 0.1371/journal.pone.0093408. eCollection 2014. PMID: 24705319 [PubMed in process] Free PMC Article

POPULAR ARTICLES:

- Moss, Cynthia (1975) The ugly hyena turns out to be a superb predator. *Smithsonian*, 6(3): 38-45.
 - (1975) The black rhinoceros. Wildlife Clubs of Kenya Newsletter. Term III.
 - (1976) Serengeti perhaps will die (Review of The Last Place on Earth by Harold T.P.
 - Hayes). The New York Times Book Review, April 17, pp. 11, 29.
 - (1976) The elephants of Manyara. Australian Women's Weekly, June 16, pp. 31-33.
 - (1977) The Amboseli elephants. Wildlife News, 12(2): 9-12.
 - (1978) Law of the jungle revised. Ms., 6(7): 65-67, 89-90.
 - (1978) A family saga. Swara, 1(1): 34-39.
 - (1980) What do you do with a 300-pound nose? *International Wildlife,* May-June, pp. 36-39.
 - (1980) A family saga. Wildlife, 22(11): 8-11.
 - (1981) The two and only. Animal Kingdom, 83(6): 25-27.
 - (1981) Social circles. Wildlife News, 16(1): 2-7.
 - (1988) Dying elephants need your help; "Guest Opinion", Komba, 1: 3.
 - (1988) A social whirl. Komba, 1: 7.
 - (1990) Cites 1989: a personal view. Swara, 13(1): 8-12.
 - (1990) The young ones. BBC Wildlife, 8(11): 738-744.
 - (1992) Tourists to the rescue. Review of: *The African Elephant: Twilight in Eden* by Roger L. DiSilvestro, and *Elephants: Saving the Gentle Giants* edited by Ronald Orenstein. *New Scientist*, February 29, pp. 49-50.
 - (1992) Ely's battle for life. The Sunday Times Magazine, October 4, pp. 20-24.
 - (1993) Echo's entourage. BBC Wildlife, 11(1): 34-38.
 - (1993) The elephant album. BBC Wildlife Supplement, January, pp. 1-16.
 - (1993) How to flog a dead zebra. Review of: *At the Hand of Man: Peril and Hope for Africa's Wildlife* by Raymond Bonner, in *New Scientist*, 11 December, No. 1903: 43-44.
 - (1994) Meine Freunde, die Riesen. *GEO*, No. 1, January, pp. 34-44. (Also in the Japanese edition of *GEO*)
 - (1994) Elephants up close and personal. Smith Alumnae Quarterly, Spring, 85(2): 16-21.
 - (1995) A case for the protection of Amboseli's bulls. Swara, 18(2): 18-21.
 - (1995) Elephants slaughtered. HSUS News, 40(2): 23-27.
 - (1997) Tuskless, Swara 20(3): 25-26,
 - (1997) Africa's secret elephants. BBC Wildlife, 15(10): 64-70
 - (1999) Last chance for freedom. *Nature's Best*, Winter-Spring, pp. 18-19.
 - (1999) Thirty baby elephants. ASPCA's Animal Watch, Spring, pp. 21-23.
 - (1999) Three days in Amboseli. Disney's Animal Kinadom, Preview Issue, pp. 100-104.
- Moss, Cynthia & Croze, Harvey (2002) Spatial elephant memories. *Geospatial Solutions*, October, pp. 32-37.

FILM SCRIPTS AND SCIENTIFIC CONSULTING FOR FILMS:

1990-1992	"Echo of the Elephants", BBC Natural History Unit
1992-1995	"Echo of the Elephants: The Next Generation", BBC Natural History Unit
1996-1997	"Africa's Forgotten Elephants", Scorer Associates for BBC
2002-2005	"Echo of the Elephants: The Last Chapter?", BBC Natural History Unit
2007-2008	"Echo and the Elephants of Amboseli, Animal Planet 13-part series
2009-2010	"Echo: An Elephant to Remember", BBC Natural History Unit
2013	"An Apology to Elephants", HBO.

Exhibit B

References cited

- Allman, J.M., A. Hakeem, J.M. Erwin, E. Nimchinsky & P. Hof (2001) The Anterior Cingulate Cortex: The Evolution of an Interface between Emotion and Cognition. *Annals of the New York Academy of Sciences*, **953**: 107-117.
- Allman, J., A.Hakeem & K. Watson (2002) Two phylogenetic specializations in the human brain. *The Neuroscientist*, **8** (4): 335-346.
- Allman, J.M., N.A. Tetreault, A.Y. Hakeem, K.F. Manaye, K. Semendeferi, J.M. Erwin, S. Park, V. Goubert & P.R. Hof (2011) The von Economo neurons in the frontoinsular and anterior cingulate cortex. *Annals of the New York Academy of Sciences*, **1225**: 59-71.
- Anderson, J.R., A. Gillies & L.C. Lock (2010) *Pan* thanatology. *Current Biology*, **20** (8): R349-351.
- Baddeley, A. D. (2000) The episodic buffer: A new component of working memory? *Trends in Cognitive Sciences*, **4** (11): 417-423.
- Barton, R.A. (2012) Embodied cognitive evolution and the cerebellum. *Philosophical Transactions of the Royal Society, Series B*, **367**: 2097-2107.
- Bates L.A., K. Sayialel, N.W. Njiraini, J.H. Poole, C.J. Moss & R.W. Byrne (2007) Elephants classify human ethnic groups by odour and garment colour. *Current Biology* 17 (22): 1938-1942.
- Bates L.A., J.H. Poole & R.W. Byrne (2008a) Elephant cognition. *Current Biology* **18** (13): R544-R546.
- Bates L.A., P.C. Lee, N. Njiraini, J.H. Poole, K. Sayialel, S. Sayialel, C.J. Moss & R.W. Byrne (2008b) Do elephants show empathy? *Journal of Consciousness Studies* **15** (10-11): 204-225.
- Bates L.A. & R.W. Byrne (2014) Primate Social Cognition: What we have learned from nonhuman primates and other animals. In: *APA Handbook of Personality and Social Psychology Vol. 1. Attitudes and Social Cognition*. Eds. M.Mikulincer & P.R. Shaver. APA, Washington, DC.
- Bjorkland, D.F. (1997) The Role of Immaturity in Human Development. *Psychological Bulletin*, **122** (2): 153-169.
- Blake, S., P. Bouche, L.E.L. Rasmussen, A. Orlando, & I. Douglas-Hamilton (2003) The last Sahelian Elephants: Ranging behaviour, population status and recent history of the desert elephants of Mali. *Save the Elephants*.
- Boesch, C. (1991) Teaching among wild chimpanzees. Animal Behaviour, 41:530-532.

- Butti, C., C.C. Sherwood, A.T. Hakeem, J.M. Allman & P.R. Hof (2009) Total Number and Volume of Von Economo Neurons in the Cerebral Cortex of Cetaceans. *The Journal of Comparative Neurology*, **515**: 243-259.
- Byrne, R.W. (2016) Evolving Insight. Oxford University Press.
- Cozzi, B., S. Spagnoli, & L. Bruno (2001) An overview of the central nervous system of the elephant through a critical appraisal of the literature published in the XIX and XX centuries. *Brain Research Bulletin*, **54**:219-227.
- Csibra, G. & Gergely, G. (2009) Natural pedagogy. *Trends in Cognitive Science*, **13**: 148-153.
- Csibra, G. & Gergely, G. (2011) Natural Pedagogy as Evolutionary Adaptation. *Philosophical Transactions of the Royal Society, Series B*, **366**: 1149–1157.
- Dekaban, A.S. & Sadowsky, D. (1978) Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. *Annals of Neurology*, **4**:345-356.
- Douglas-Hamilton, I., S. Bhalla, G. Wittemyer, & F. Vollrath, (2006) Behavioural reactions of elephants towards a dying and deceased matriarch? *Applied Animal Behaviour Science*, **100**: 87-102.
- Eisenberg, J.E. (1981) The mammalian radiations: an analysis of trends in evolution, adaptation, and behavior. Chicago: University of Chicago Press.
- Elston, G.N. (2003) Cortex, Cognition and the Cell: New Insights into the Pyramidal Neuron and Prefrontal Function. *Cerebral Cortex*, **13** (11):1124–1138.
- Eltringham, S.K. (1982) *Elephants*. Poole, Dorset: Blandford Press.
- Foley, C.A.H., N. Pettorelli, & L. Foley. (2008) Severe drought and calf survival in elephants. *Biology Letters*, **4**:541–544.
- Foerder, P., M. Galloway, T. Barthel, D.E. Moore III & D. Reiss (2011) Insightful Problem Solving in an Asian Elephant. *PLoS One*, **6** (8): e23251.
- Frith, C. & U. Frith (2005) Theory of Mind. Current Biology, 15 (17): R644- R645:
- Fuster, J.M. (2002) Frontal lobe and cognitive development. *Journal of Neurocytology*, **31**: 373–385.
- Gallup, G.G., Jnr (1970) Chimpanzees: self-recognition. *Science*, **167**: 86-87.
- Gallup, G.G., Jnr (1982) Self-awareness and the emergence of mind in primates. *American Journal of Primatology*, **2**(3): 237-248.

- Guinet, C., & J. Bouvier, (1995) Development of intentional stranding hunting techniques in killer whale (*Orcinus orca*) calves at Crozet Archipeligo. *Canadian Journal of Zoology*, **73**: 27-33.
- Hakeem, A.Y., C.C. Sherwood, C.J. Bonar, C. Butti, P. R. Hof & J.M. Allman (2009) Von Economo neurons in the elephant brain. *Anatomical Record*, **292** (2): 242-48.
- Hedges, S. B. (2001) Afrotheria: Plate tectonics meets genomics. *Proceedings of the National Academy of Sciences USA*, **98**: 1-2.
- Irie-Sugimoto, N., T. Kobayashi, T. Sato, & T. Hasegawa. (2008) Evidence of meansend behavior in Asian elephants (*Elephas maximus*). *Animal Cognition*, **11**: 359–65.
- Jerison, H.J. (1973) *Evolution of the brain and intelligence*. New York: Academic Press.
- Kolb, B. & I.Q. Whishaw (2008) Fundamentals of Human Neuropsychology. 6th Edition. Worth Publishers.
- Lee, P.C. (1986) Early social development among African elephant calves. *National Geographic Research*, **2**: 388–401.
- Lee, P.C. (1987) Allomothering among African elephants. *Animal Behaviour*, **35**: 278-291.
- Leggett, K.E.A. (2006) Home range and seasonal movement of elephants in the Kunene Region, northwestern Namibia. *African Zoology*, **41** (1): 17–36.
- Leighty, K.A., J. Soltis, K. Leong, & A. Savage (2008) Antiphonal exchanges in African elephants (*Loxodonta africana*): Collective response to a shared stimulus, social facilitation, or true communicative event? *Behaviour*, **145**: 297–312.
- McComb, K., C. Moss, S. Sayialel, & L. Baker. 2000. Unusually extensive networks of vocal recognition in African elephants. *Animal Behaviour*, **59**: 1103–1109.
- McComb, K., C.J. Moss, S.M. Durant, L. Baker & S. Sayialel (2001) Matriarchs as repositories of social knowledge in African elephants. *Science*, **292**: 491–494.
- McComb, K., L. Baker, & C. Moss (2006) African elephants show high levels of interest in the skulls and ivory of their own species. *Biology Letters*, **2**: 26–28.
- McComb, K., G. Shannon, S.M. Durant, K. Sayialel, R. Slotow, J.H. Poole, & C. Moss (2011) Leadership in elephants: the adaptive value of age. *Proceedings of the Royal Society, Series B*, **278** (1722): 3270-3276.
- McComb, K., G. Shannon, K.N. Sayialel, & C. Moss (2014) Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. *Proceedings of the National Academy of Sciences*, **111** (14): 5433-5438.

- Miller, G.A. (1956) The magical number seven, plus-or-minus two: Some limits on our capacity for processing information. *Psychological Review*, **63**: 81-97.
- Moss, C.J. (1992) *Echo of the elephants: The story of an elephant family*. London: BCA.
- Moss, C.J. & J.H. Poole (1983) Relationships and social structure of African elephants. In *Primate social relationships: An integrated approach*, ed. R. A. Hinde, 314–25. Oxford: Blackwells.
- Parker, S.T., R.W. Mitchell & M.L. Boccia (1994) *Self-awareness in animals and humans: Developmental Perspectives*. New York: Cambridge University Press.
- Plotnik, J.M., F.B.M. de Waal & D. Reiss (2006) Self-recognition in an Asian elephant. *Proceedings of the National Academy of Sciences USA*, **103**: 17053–7.
- Plotnik, J.M. R. Lair, W. Suphachoksahakun & F.B.M. de Waal (2011) Elephants know when they need a helping trunk in a cooperative task. *Proceedings of the National Academy of Sciences*, **108** (12): 5116–5121.
- Poole, J.H. (1996) Coming of age with elephants. New York: Hyperion
- Poole, J.H. (1999) Signals and assessment in African elephants: Evidence from playback experiments. *Animal Behaviour*, **58**: 185–193.
- Poole, J.H. (2011) The behavioral contexts of African elephant acoustic communication. In: *The Amboseli Elephants: A Long-Term Perspective on a Long-Lived Mammal.* Moss, C.J. & Croze, H.J. (Eds.) Chicago: *University of Chicago Press.*
- Poole, J. H. & Granli, P. K. 2004. The visual, tactile and acoustic signals of play in African savannah elephants. In (ed.) Jayewardene, Jayantha. *Endangered Elephants, past present & future*. Proceedings of the Symposium on Human Elephant Relationships and Conflicts, Sri Lanka, September 2003. Biodiversity & Elephant Conservation Trust, Colombo. Pages 44-50.
- Poole, J.H. & P.K. Granli (2011) Signals, Gestures, and Behavior of African Elephants. In: *The Amboseli Elephants: A Long-Term Perspective on a Long-Lived Mammal.* Moss, C.J. & Croze, H.J. (Eds.) Chicago: *University of Chicago Press.*
- Poole, J.H., P.L. Tyack, A.S. Stoeger-Horwath & S. Watwood (2005) Elephants are capable of vocal learning. *Nature*, **434**: 455–456.
- Prebble, S.C., D.R. Addis & L.J. Tippett (2013) Autobiographical memory and sense of self. Psychological Bulletin, 139 (4): 815-840.
- Premack, D. & G. Woodruff (1978) Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1: 515–526.

- Reiss, D., & L. Marino (2001) Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. *Proceedings of the National Academy of Sciences, USA*, **98**: 5937–42.
- Roth, G. & U. Dicke (2005) Evolution of the brain and intelligence. *Trends in Cognitive Sciences*, **9**: 250–257.
- Shannon, G., R. Slotow, S.M. Durant, K.N. Sayialel, J.H. Poole, C. Moss & K. McComb (2013) Effects of social disruption in elephants persist decades after culling. *Frontiers in Zoology*, **10** (62): 1-10.
- Shoshani, J., W.J. Kupsky & G.H. Marchant (2006) Elephant brains. Part I: Gross morphology, functions, comparative anatomy, and evolution. *Brain Research Bulletin*, **70**: 124–157.
- Smet, A.F. & R.W. Byrne (2013) African elephants can use human pointing cues to find hidden food. *Current Biology*, **23** (20): 2033-2037.
- Smet, A.F. & R.W. Byrne (2014) African elephants recognize visual attention from face and body orientation. *Biology Letters*, **10**: 20140428.
- Soltis J., K. Leong & A. Savage (2005) African elephant vocal communication I: Antiphonal calling behavior among affiliated females. *Animal Behaviour*, **70**: 579-587.
- Stoeger, A.S., D. Mietchen, S. Oh, S. de Silva, C.T. Herbst, S. Kwon & W.T. Fitch (2012) An Asian Elephant Imitates Human Speech. *Current Biology*, **22**(22): 2144-8
- Viljoen, P. J. (1989) Spatial distribution and movements of elephants (*Loxodonta africana*) in the northern Namib desert region of Kaokoveld, South West Africa–Namibia. *Journal of Zoology*, **219**: 1–19.
- Wood, J.D., B. McCowan, W.R. Langbauer, J.J. Viloen & L.A. Hart (2005) Classification of African elephant *Loxodonta africana* rumbles using acoustic parameters and cluster analysis. *Bioacoustics*, **15**: 143–161.